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Fat Storage Syndrome in Pacifi c Peoples:  
a combination of environment and genetics?

S T U D Y

ABSTRACT
Pacifi c people (especially Micronesian and Polynesian) have some of the 
highest rates of obesity and diabetes in the world that largely developed 
since the introduction of western culture and diet.  Recent studies 
suggest that much of the risk relates to the excessive intake of sugar 
(sucrose) and carbohydrates, leading to a type of fat storage syndrome 
(metabolic syndrome). Here we discuss some of the environmental, 
genetic and epigenetic reasons why this group might be especially prone 
to developing obesity and diabetes compared to other ethnic groups.  
Indirect evidence suggests that the higher endogenous uric acid levels 
in the Polynesian-Micronesian population may represent a predisposing 
factor for the development of obesity and diabetes in the context of 
Western diets and lifestyles. Pacifi c people may be an ideal group to 
study the role of “thrifty genes” in the pathogenesis of the current 
obesity epidemic.
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Introduction

Few populations have suff ered more from the worldwide ep-
idemic of obesity and diabetes than the indigenous and mi-

grant populations of Pacifi c Island nations.  In a report by the 
World Health Organization from 2007, of the 10 most obese 
countries in the world, eight are from the Pacifi c Islands (Figure 
1).  The rise in diabetes has been meteoric.  In Nauru, for exam-
ple, the fi rst recorded case of diabetes was diagnosed in 19251,  
whereas by 1979, 40 percent of the population suff ered from 
this debilitating condition2.  Obesity carries a greater toll than 
simply the excess weight one is forced to carry, for it comes 
with its evil partners of high blood pressure, dyslipidemias, 
strokes, heart disease and chronic kidney and liver disease.   
If there was ever a puzzle to solve, this is the one that health 
care providers need to focus on.

In this brief review, we will address what has emerged as 
one of the greatest risk factors for the development of obesity 

and diabetes, that being the intake of excessive amounts of 
fructose, primarily from the intake of sugar (sucrose).  We 
will also take an evolutionary biological perspective to devel-
op a better understanding of why this particular group may 
be at such high risk.

Fat Storage Syndrome, Fructose, and the 
Roots of the Obesity and Diabetes Epidemic
While specialists often tend to focus on their particular disease, 
there is increasing evidence that many of the most common 
diseases facing us today have their roots in the physiological 
response of fat storage (Figure 2)3,4.   In essence, one of the ba-
sic rules of survival is to fi nd ways to live through periods of 
food shortage, and to do this many animals will activate met-
abolic processes that lead to conservation of energy, reduction 
in metabolism, and the storage of fat in their liver and adipose 
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tissues3,4.  Accompanying this process is the development of 
insulin resistance, which allows maintenance of circulatory 
glucose levels that provide fuel for the brain3,4.  These physio-
logical features are called the metabolic syndrome in humans 
and often are considered to be pathophysiological5, but they 
represent normal physiological processes that can be observed 
in hibernating mammals and long distance migrating birds3,4. 
As such, we prefer to call it fat storage syndrome to character-
ize its underlying physiology3.

 Weight is tightly regulated in most animal species, and 
evidence suggests that to initiate fat storage, one has to acti-
vate a specifi c metabolic program6-8.  First, one must block nor-
mal satiety responses, such as by inducing leptin resistance9, 
or by stimulating the craving or addiction to certain foods10,11.  
One must also try to reduce energy expenditure by decreasing 
physical activity and metabolism3,4.  This is commonly done 
by animals preparing for hibernation, estivation, or long dis-
tance migration3.

 The net eff ect is to stimulate excessive food intake (hy-
perphagia) and reduce metabolism, leading to weight gain.   A 
key aspect to understanding this process is that many features 
of western culture, such as the providin provision of excessive 
portions of food or the increasing use of television, are likely 
the response to activation of this metabolic switch3,4.  This is 
not to revoke the idea that these social stimuli are 
not playing a signifi cant contributory role in the ep-
idemic, but rather to emphasize that the underlying 
driving mechanism may be mediated by metabolic 
and neuroendocrine–driven mechanisms to store fat.

 Another insight has been the activation of the 
process which occurs in the mitochondria, the key 
organelle governing energy metabolism.  Studies by 
our group and others suggest that the initiating mech-
anism is the induction of mitochondrial oxidative 
stress that leads directly to activation of fat synthe-
sis and a blockade in fatty acid oxidation12.  In addi-
tion, there is the activation of a  ‘switch’ in which 
adenosine monophosphate (AMP) is preferentially 
shunted for utilization by AMP deaminase (AMPD), 
as opposed to being used to engage the activation of 
AMP activated-protein kinase (AMPK)13.  Activation 
of AMPD leads to the generation of uric acid that has 
a central role in driving these metabolic processes12-14. 
The changes in mitochondrial metabolism can result 
in changes in body composition (increasing fat) and 
the development of insulin resistance even in the ab-
sence of increased caloric intake of weight gain15-17.  Thus, the 
process activating the storage of fat results in both calorie-de-
pendent (weight gain) and calorie–independent (body compo-
sition and insulin resistance) eff ects17.

 Experimental studies suggest that intake of certain foods 
might have a major role in activating the metabolic processes 
leading to fat storage.  Fructose, present in added sugars such 
as sucrose and high fructose corn syrup, has been strongly im-
plicated as the major food source activating this process17,18. 
Fructose has been shown to specifi cally activate AMP deami-
nase and to induce mitochondrial oxidative stress13,19, activating 
the full phenotypic presentation of the fat storage syndrome, 
and leading to its downstream consequences, including diabe-
tes, fatty liver and steatohepatitis, hypertension and chronic 

kidney disease17,20-25.  Natural fruits containing fructose can also 
engage this pathway, but are relatively less eff ective due to the 
relatively lower fructose content (per fruit) and the presence 
of other ingredients in fruit (fi ber, antioxidants, etc) that help 
prevent the induction of mitochondrial oxidative stress26,27.  
Theoretically, other foods, such as purine-rich beer and um-
ami foods, may also engage the stimulation of fat storage by 
providing substrates that might increase intracellular uric acid 
levels28. Finally, genetic and epigenetic mechanisms might also 
have a role in activating these metabolic pathways that would 
favor the storage of fat (to be discussed later).

The Epidemiological Transition: Role of Sugar 
in the Epidemic of Obesity in Pacifi c People

 Sugar (sucrose) consists of a disaccharide of fructose 
and glucose, and like fructose, can induce features of fat stor-
age syndrome in experimental animals29.  Sucrose can rapid-
ly induce addiction in rats, due to the repeated stimulation 
of dopamine in the brain followed by a chronic decrease in 
dopamine (D2) receptors30.  Because the cellular and mito-
chondrial activation of the fat storage switch is driven by the 
concentrations of fructose, both the amount and rapidity by 
which sucrose is ingested should be important.  Hence, sugar–
sweetened beverages such as soft drinks, sweetened teas, and 

energy drinks become the best way to activate the fat switch.  
Consistent with this fi nding, is the intake of soft drinks i as a 
major risk factor for the development of metabolic syndrome 
and diabetes31-36.

 The rise in world sugar production in the eighteenth 
and nineteenth centuries led to a marked rise in sugar intake, 
especially in England and the United States4,37.  This was fur-
ther stimulated by the progressive reduction in the English 
tax on sugar during the nineteenth century, resulting in its 
full repeal in April, 1874.  As such, sugar became one of the 
best items for trade when westerners would meet indigenous 
peoples.  This was particularly true in the Pacifi c Islands. In 
Nauru, for example, sugar intake increased markedly with its 
introduction by westerners, with one report suggesting that 

Figure 1.  Countries with the Top Rates of Obesity or Overweight#

Key: #Based on World Health Organization Report; *Micronesia, **Polynesia



SUGAR AND PACIFIC PEOPLES STUDY

13PACIFIC HEALTH DIALOGMARCH 2014 . VOLUME 20 . NUMBER 1

Figure 2.  Fat Storage Syndrome as a Precursor for Obesity, Diabetes and Cardiovascular Disease

the mean intake per person may have reached one pound of 
sugar per day by 19271,38.  Sugar was also a major trading prod-
uct introduced to the New Zealand Māori, as well as to other 
Polynesian communities such as Samoa and Tonga. Today, in-
take of soft drinks and sugar remains very high among these 
ethnic groups2.  Numerous reasons may help explain this, in-
cluding the fact that soft drinks are addictive and inexpensive, 
and because the hot climate encourages the intake of fl uids.

One should mention that other foods may also be con-
tributory.  Recently our group showed that glucose can also 
stimulate fatty liver and insulin resistance if it is converted to 
fructose in the liver16.  The conversion of glucose to fructose 
is mediated by aldose reductase, which is normally not ex-
pressed but may be induced by high glucose solutions (such 
as soft drinks), by high salt diets, or by recurrent dehydration 
(such as may occur in hot environments)16,39.   If this process 

is activated, then high glycemic foods such as fl our and rice 
might also engage the pathway40.  High fat foods may also syn-
ergize with sugar to  drive weight gain and fatty liver41.  In ad-
dition, alcohol and especially beer (which contains high purine 
content from the brewer’s yeast) also could engage the path-
way28.  However, given the powerful eff ects of fructose, it is 
likely that the major driving stimulus is fructose intake from 
excessive sugar ingestion.

Role of Genetics and Epigenetics in the 
Epidemic of Obesity in Pacifi c People
The anthropologist, James Neel, proposed over 50 years ago 
that the rise in obesity and diabetes in modern culture may 
have represented the acquisition of “thrifty genes” that would 
favor fat storage during a period of famine, but with the conse-
quences of causing obesity and diabetes during a time of plen-
ty42.  The discovery that uric acid is an important regulator of 
mitochondrial oxidative stress and fat storage led our group 
to suggest that the higher levels of uric acid in humans and 
apes compared to other mammals may have the consequence 

of increasing our susceptibility for becoming fat43-45.  Indeed, 
humans have a higher serum uric acid level due to an absence 
of uricase, which is an enzyme present in many animals that 
degrades uric acid.   Interestingly, humans lost uricase during 
the mid-Miocene, at a time when our ancestors were facing 
extinction due to changing climates and reduced availability 
of fruits (which were their major food supply)46,47.  In collabo-
ration with Dr Peter Andrews, we have suggested that the loss 
of uricase may have provided a survival advantage by increas-
ing intracellular uric acid levels that would help stimulate fat 
storage45.  Indeed, we have shown that rats that have uricase 
inhibited developed worse features of metabolic syndrome 
in response to the same dose of fructose48.  Furthermore, in 
collaboration with Dr Eric Gaucher, we have resurrected the 
extinct ape uricase based on computer modeling of uricases 
from living species and have shown that its presence blocks 

the increase in fat that occurs in liver cells exposed to fruc-
tose49.  Thus, it seems likely that the loss of uricase may have 
acted as a “thrifty gene” to increase our susceptibility to the 
eff ects of sugar.

Pacifi c people consist of three major ancestral groups 
(Polynesians, Micronesians, and Melanesians).  While all three 
groups are being aff ected by the epidemic of obesity and di-
abetes, the hardest hit groups are the Micronesians (such as 
those living in Nauru) and the Polynesians (including the New 
Zealand Māori)2.   Genetic studies suggest the Micronesians and 
Polynesians are closely related, and that they originated from 
aborigines in Taiwan50.  Approximately 3000 years ago they 
passed through Melanesia, colonizing off –shore islands, on their 
way to the more distant Pacifi c Islands, which they reached in 
only the last 800 to 900 years50. While there was some admix-
ing with the Melanesians51, in general Polynesians are genet-
ically very distinct from that population50.  Interestingly, the 
serum uric acid levels in Taiwanese aborigines, Micronesians 
and Polynesians appear to be higher than that observed in many 
other ethnic groups52-54.  The Taiwanese aboriginal population 
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also suff ers from higher rates of obesity and diabetes than the 
Han Chinese living in Taiwan55. While some of these studies 
might refl ect the additive eff ects of diets high in carbohydrates 
and sugar56, there is also some evidence that uric acid levels 
were high when these populations were on their native diets57,58. 
For example, we found that Yanomamö Indians on their native 
diets have uric acid levels in the 3 to 4 mg/dl range59, where-
as Prior et al reported that Polynesians living on native diets 
of coconut, taro and fi sh in Pukapuka had uric acid levels of 7 
mg/dl or greater60.  Evans further showed that the elevated uric 
acid levels in the population on Pukapuka correlated with obe-
sity, as measured by a ponderal index57. Further evidence that 
the high uric acid levels may have been present in Polynesian 
has been provided by the discovery of gouty lesions in skele-
tons identifi ed from early Māori culture i of Wairau Bar, New 
Zealand, circa 1200 A.D., as well as other early Polynesian 
(Lapitan) sites61-63.  Gouty lesions have also been identifi ed in 
skeletons of ancestral Micronesians64.

The higher uric acid levels in Polynesians prior to western-
ization likely has a genetic basis, but could potentially refl ect 
diet, as their intake included purine-rich seafood, and foods con-
taining fructose, such as roots from the New Zealand Cabbage 
(Cordyline australis) and the Pacifi c cabbage (Cordyline termina-
lis) tree, and the karaka fruit (Corynocarpus laevigata)58.  Some 
of the elevation of uric acid levels in current Micronesians and 
Polynesians may also refl ect the introduction of western diet, 
such as sugarcane.  Alcohol intake may also account for higher 
uric acid levels in some of the population65,66. However, it seems 
likely that the Micronesian-Polynesian population express ad-
ditional polymorphisms in uric acid metabolism besides the 
uricase mutation that may be responsible for the higher serum 
uric acid levels.  For example, one study in Taiwanese aborig-
ines linked hyperuricemia to chromosome 4q2554. Other asso-
ciations with urate transporters in Polynesians have also been 
identifi ed67.  A number of polymorphisms in uric acid metab-
olism have been linked with features of metabolic syndrome, 
including genes involved in fructose and glucose metabolism, 
aldose reductase, xanthine oxidase, and urate transport68-72.   
Epigenetic mechanisms may also be involved.  Maternal mal-
nutrition and low birth weights are also associated with the 
development of metabolic syndrome, and they also lead to 
an increase in serum uric acid that manifests early in the in-
fant (reviewed in 73).

We propose that the Polynesian and Micronesian peoples 
may have an additional reason to be susceptible to obesity due 
to the acquisition of genetic polymorphisms and/or epigenetic 
modifi cations that led to a higher endogenous uric acid level 
above and beyond that which occurs with simple genetic de-
letion of uricase.   The ability to sail for days to distant islands 
and to live on the limited resources of the island may have pro-
vided a survival advantage to those individuals who harbored 
a polymorphism favoring higher uric acid levels.  The decima-
tion of up to half of those of Polynesian ancestry with the in-
itial introduction of diseases including small pox, infl uenza 
and measles2 might also have favored the survival of individ-
uals having higher uric acid levels and greater fat stores.  The 
widespread viewpoint among early Polynesians that obese indi-
viduals were more attractive1 may have been a response to the 
benefi ts of fat stores on successful pregnancy74 and might have 
provided a social determinant that would also favor selection 

of an obese phenotype. A higher uric acid level may not only 
favor fat accumulation, but also the preservation of nitrogen 
due to its ability to block urea synthesis75.

Caveats
One might argue that if uric acid was so important in driving 
obesity and diabetes, and if uric acid levels were indeed high-
er in the Micronesian and Polynesian population for centuries, 
that these conditions should have been present before the in-
troduction of western culture.  Obesity was known to early 
Polynesians, and was in fact coveted, likely because pregnancy 
is tightly linked with adequate fat stores74. Diamond mentions 
that early explorers commented that Nauruans were “plump”1.  
On reviewing historic images of Māori (1870) and Nauruan (1916) 
people, there is evidence of some individuals being overweight 
or obese (see The Natural Heritage Collection of New Zealand 
(www.nhc.net.nz) and photos from the National Archives of 
Australia, especially by Thomas McMahon).

However, diabetes and other complications appear to have 
been rare.  This may relate to the necessity to maintain phys-
ical activity for their daily living.  While obesity is commonly 
accompanied by decreased activity (which appears to be met-
abolically driven), the encouragement of active exercise can 
reduce weight and the risk for diabetes76.

 Another concern relates to recent studies investigat-
ing uric acid polymorphisms in Māori and other Pacifi c Island 
populations.  These studies have identifi ed polymorphisms in 
SLC2A9 as being one of the reasons for higher uric acid levels 
and increased risk for gout in this population77.  However, while 
polymorphisms in SLC2A9 increase the risk for serum uric acid 
levels and gout, they do not appear to increase the risk for obe-
sity, diabetes, or cardiovascular disease78,79.  Notwithstanding 
this, recent studies suggest that SLC2A9 is quite complicated, as 
systemic knockdown causes hypouricemia80, but knockdown of 
intestinal SLC2A9 causes hyperuricemia and obesity that is uric 
acid-dependent (Brian DeBosch, Washington University, per-
sonal communication).  Hence, polymorphisms that increase 
serum uric acid might actually lower uric acid levels entering 
the liver, and might even block the eff ects of fructose. Indeed, 
recent studies suggest that the presence of SLC2A9 polymor-
phisms that increase serum uric acid might actually blunt the 
risk for soft drink intake to increase the risk of gout81.

Finally, these studies do not rule out other potential genet-
ic mechanisms for why Polynesians and Micronesians show in-
creased susceptibility to obesity.  For example, polymorphisms 
in the leptin gene have been linked with obesity in Samoans82.  
A recent sequencing of the mitochondrial genome also iden-
tifi ed novel variants specifi c to the Polynesian population83. 

Another potential confounding factor is the fact that, 
while serum uric acid is elevated in subjects with prediabetes 
and is a strong predictor of diabetes17, serum uric acid levels 
fall when a subject becomes diabetic84,85.   The mechanism is 
not clear, but may be mediated partially by the eff ects of gly-
cosuria to stimulate uricosuria.   As such, studies investigating 
uric acid levels and their relationship to cardiovascular eff ects 
have to carefully control for the presence or absence of diabetes.

Additional Mechanisms Involved in the 
Obesity Epidemic in Pacifi c Peoples
With globalization and increased international trade, many 
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